## Chapter 6 <br> Multiple Product Factory Models

6.1. (a) One machine needed at each station.
(b)

|  | Arrival | Cycle |  |
| :---: | :---: | :---: | :---: |
| WS | Rate | Time | WIP |
| \#1 | $1.299 / \mathrm{hr}$ | 6.260 hr | 8.132 |
| \#2 | $1.035 / \mathrm{hr}$ | 3.878 hr | 4.015 |
| \#3 | $1.363 / \mathrm{hr}$ | 5.202 hr | 7.090 |
| System | $0.5 / \mathrm{hr}$ | 38.473 hr | 19.236 |


| 6.3. |  |  |  |
| :---: | :---: | :---: | :---: |
| WS | Arrival | Cycle |  |
| Rate | Time | WIP |  |
| \#1 | $10.555 / \mathrm{hr}$ | 0.485 hr | 5.119 |
| $\# 2$ | $10.555 / \mathrm{hr}$ | 0.382 hr | 4.032 |
| $\# 3$ | $5.555 / \mathrm{hr}$ | 0.485 hr | 2.692 |
| $\# 4$ | $5.000 / \mathrm{hr}$ | 1.845 hr | 9.227 |
| System | $5.000 / \mathrm{hr}$ | 4.214 hr | 21.071 |

6.5.

| WS | Arrival | Queue | Cycle |  |
| :---: | :---: | :---: | :---: | :---: |
| Rate | Time | Time | WIP |  |
| \#1 | $0.560 / \mathrm{hr}$ | 6.524 hr | 11.181 hr | 6.262 |
| \#2 | $0.496 / \mathrm{hr}$ | 13.414 hr | 15.249 hr | 7.564 |
| \#3 | $0.320 / \mathrm{hr}$ | 9.670 hr | 17.670 hr | 5.654 |
| System | $0.320 / \mathrm{hr}$ |  | 60.843 hr | 19.479 |

$t h_{s}^{1}=0.064 / \mathrm{hr}, \quad t h_{s}^{2}=0.096 / \mathrm{hr}, \quad t h_{s}^{3}=0.08 / \mathrm{hr}, \quad t h_{s}^{4}=0.08 / \mathrm{hr}$
$C T_{s}^{1}=57.83 \mathrm{hr}, \quad C T_{s}^{2}=70.65 \mathrm{hr}, \quad C T_{s}^{3}=69.65 \mathrm{hr}, \quad C T_{s}^{4}=42.81 \mathrm{hr}$
6.7.
(a)
(b) $E\left[T_{e}(2,1)\right]=0.1111 \mathrm{hr}$
(c) $C_{e}^{2}(2,1)=3.7125$
(d) $E\left[T_{e}(1)\right]=0.1224 \mathrm{hr}$ and $C_{e}^{2}(1)=3.1822$
(e)

| Workstation | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| Workload | 1.3914 | 0.8437 | 0.7603 |
| Min. Machines | 2 | 1 | 1 |

(f) $\quad p_{21}=0.1246$
(g) $\quad C_{a}^{2}(1)=1.0798$
(h) $\quad C T_{q}(2)=0.9417 \mathrm{hr}, \quad C T(2)=1.0211 \mathrm{hr} \quad W I P(2)=10.8398$
(i) $W I P_{s}=22.3968$ and $C T_{s}=2.240 \mathrm{hr}$
(j) $\quad t h_{s}^{1}=5 / \mathrm{hr}, \quad t h_{s}^{2}=5 / \mathrm{hr}, \quad C T_{s}^{1}=2.5465 \mathrm{hr}, \quad C T_{s}^{2}=1.9328 \mathrm{hr}$
6.9.
(a)
(b) $E\left[T_{s}(2)\right]=0.0746 \mathrm{hr}$ and $C_{s}^{2}(2)=1.244$
(c) $E\left[T_{e}(1)\right]=0.127 \mathrm{hr}$ and $C_{e}^{2}(1)=3.137$
(d) $p_{31}=0.178$
(e)

| Workstation | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Workload | 1.435 | 0.8167 | 0.787 | 0.7584 |
| Min. Machines | 2 | 1 | 1 | 1 |

(f) $\quad C_{a}^{2}(1)=1.095$
(g) $\quad C T_{q}(3)=0.774 \mathrm{hr}, \quad C T(3)=0.861 \mathrm{hr} \quad W I P(3)=7.789$
(h) $W I P_{S}=25.985$ and $C T_{s}=3.712 \mathrm{hr}$
(i) $\quad t h_{s}^{1}=4 / \mathrm{hr}, \quad t h_{s}^{2}=3 / \mathrm{hr}, \quad C T_{s}^{1}=4.394 \mathrm{hr}, \quad C T_{s}^{2}=2.799 \mathrm{hr}$
6.12.

The second row of the table associated with Problem 6.12 should refer to Job Type 2 instead of Job Type 1.

### 6.13.

This problem refers to Problem 6.12. Please note that the second row of the table associated with that should refer to Job Type 2. Also note that for this problem, the two machines of Workstation 2 are reallocated so that each cell gets one machine.
$W I P_{s}=42.643$ and $C T_{s}=5.330 \mathrm{hr}$.
$t h_{s}^{1}=5 / \mathrm{hr}, \quad t h_{s}^{2}=3 / \mathrm{hr}, \quad C T_{s}^{1}=3.992 \mathrm{hr}, \quad C T_{s}^{2}=7.561 \mathrm{hr}$
Separating the two machines yields a mean factory cycle time of 5.330 hr which is a $4.3 \%$ improvement, although there is a slight increase in the mean cycle time for Product 2.

